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Adaptive Clinical Trials

m Sample size re-estimation

m Randomization response adaptive
m Stratification adaptive

m Treatment group adaptive

m Target population adaptive
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Outcome-Adaptive Randomization: Is It Useful?

Edward L. Korn and Boris Freidlin

See accompanying editorial on page 606

A B § T R A C T

Outcome-adaptive randomization is one of the possible elements of an adaptive trial design in which
the ratio of patients randomly assigned to the experimental treatment arm versus the control
treatment arm changes from 1:1 over time to randomly assigning a higher proportion of patients to the
arm that is doing better. Outcome-adaptive randomization has intuitive appeal in that, on average, a
higher proportion of patients will be treated on the better treatment arm (if there is one). In both the
randomized phase |l and phase Ill settings with a short-term binary outcome, we compare outcome-
adaptive randomization with designs that use 1:1 and 2:1 fixed-ratio randomizations (in the latter, twice
as many patients are randomly assigned to the experimental treatment arm). The comparisons are
done in terms of required sample sizes, the numbers and proportions of patients having an inferior
outcome, and we restrict attention to the situation in which one treatment arm is a control treatment
(rather than the less common situation of two experimental treatments without a control treatment).
With no differential patient accrual rates because of the trial design, we find no benefits to
outcome-adaptive randomization over 1:1 randomization, and we recommend the latter. If it is thought
that the patient accrual rates will be substantially higher because of the possibility of a higher proportion
of patients being randomly assigned to the experimental treatment (because the trial will be more
attractive to patients and clinicians), we recommend using a fixed 2:1 randomization instead of an
outcome-adaptive randomization.

J Clin Oncol 29:771-776. Published by the American Society of Clinical Oncology



Outcome-Adaptive Randomization: Is It Useful?

Table 2. Average Proportion of Responders, No. of Nonresponders, and Overall Proportion Treated on the Experimental Arm for Various Randomized
Phase Il Trial Designs, Some of Which Use Adaptive Randomization

Adaptive Randomization

(N = 140)
Fixed Sample Size Capped at 80% Assignment Probability Capped at 90% Assignment Probability
Response Rates 1 21 Overall % Overall %
by Arm (n=132) (n = 153) Treated on Treated on
Contral Experimental P (responders) No. of P (responders) No. of P (responders) No. of Experimental P (responders) No. of Experimental
Arm Arm % Nonresponders % Nonresponders % Nonresponders Arm % Nonresponders Arm
0.2 0.2 20.0 105.6 20.0 122.4 20.0 112.0 50.0 20.0 112.0 50.0
0.2 03 25.0 99.0 26.6 112.2 26.0 103.6 59.7 26.0 103.6 60.3
02 0.4 30.0 92.4 333 102.0 33.2 935 66.2 337 929 68.2
0.2 05 35.0 85.8 40.0 91.8 41.0 826 69.9 421 81.1 73.6

NOTE. Adaptive randomization uses the method of Thall and Wathen'? but with no early stopping. One-sided type 1 error = 10%, power = 90% at 20% v 40%
response rates; results based on 500,000 simulations. Characteristics of trial designs corresponding to the trial alternative hypothesis are in bold type. P (responders)
% is the average proportions of responders given as a percentage.




Table 4. Average Proportion of Responders and No. of Nonresponders for Various Randomized Phase Il Trial Designs

Adaptive Randomization: Block-Stratified Analysis and

Fixed Sample Size (1:1) Fixed Sample Size (2:1) Randomization Capped at 80% Assignment Probability

1-Year Survival Rates (n = 522; 261:261) (n = 573; 382:191) (n = 748; block size = 50)

Control Experimental No. of No. of No. of Overall % Treated on
Arm Arm P (responders) % Nonresponders P (responders) % Nonresponders P (responders) % Nonresponders Experimental Arm
0.8 0.8 80.0 104.4 80.0 114.6 80.0 149.6 50.0
0.8 0.85 825 91.4 83.3 95.5 83.3 124.6 66.9
0.8 0.9 85.0 78.3 86.7 76.4 875 93.4 751

NOTE. Adaptive randomization uses the method of Thall and Wathen'? but with no early stopping. One-sided type 1 error = 2.5%, power = 90% at 80% v 90%
1-year survival rates; results based on 500,000 simulations. Characteristics of trial designs corresponding to the trial alternative hypothesis are in bold type. P
(responders) % is the average proportions of responders given as a percentage.
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Using randomization tests to preserve type I error with response
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ARTICLE INFO ABSTRACT
Article history: We demonstrate that clinical trials using response adaptive randomized treatment
Available online 5 January 2011 assignment rules are subject to substantial bias if there are time trends in unknown

prognostic factors and standard methods of analysis are used. We develop a general
class of randomization tests based on generating the null distribution of a general test
statistic by repeating the adaptive randomized treatment assignment rule holding fixed the
sequence of outcome values and covariate vectors actually observed in the trial. We develop
broad conditions on the adaptive randomization method and the stochastic mechanism
by which outcomes and covariate vectors are sampled that ensure that the type | error is
controlled at the level of the randomization test. These conditions ensure that the use of the
randomization test protects the type [ error against time trends that are independent of the
treatment assignments. Under some conditions in which the prognosis of future patients
is determined by knowledge of the current randomization weights, the type | error is not
strictly protected. We show that response adaptive randomization can result in substantial
reduction in statistical power when the type I error is preserved. Our results also ensure
that type I error is controlled at the level of the randomization test for adaptive stratification
designs used for balancing covariates.

Keywords:

Response adaptive randomization
Adaptive stratification

Clinical trials

Published by Elsevier B.V.
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Table 1
Type | error for Mann-Whitney test.
No time trend Time trend
Simple randomization 0.046 0.050

Adaptive randomization 0.049 0.205




Table 1 shows the result of a simple simulation of two arm clinical trials with data for n = 50 patients. The test used
for comparing the groups is based on the Mann-Whitney statistic. The observed difference was considered statistically
significant if the large sample normal approximation was significant at a one-sided 5% level. For the first row, treatment
assignment was based on simple equally weighted non-adaptive randomization. For the first column of the table, the
outcomes y1, ¥a, . . ., Yy are independent and normally distributed with mean zero and variance 1; there are no measured
covariates and no treatment effect. In this case, the type | error, estimated from 10,000 replicated trials, approximates the
nominal 5% significance level used for the tests. The last column shows results when there is an unknown time trend. That
is, yi was normally distributed with mean 10i/n and variance 1. Again there were no measured covariates and no treatment
effect. With or without time trend, using equally weighted non-adaptive randomization, the proportion of the 10,000
simulation replications in which the null hypothesis was rejected is approximately 0.05, and the small discrepancy is within
the limitations of the number of replications and the accuracy of the large sample approximation to the Mann-Whitney
statistic for clinical trials of only 50 patients.

The second row of Table 1 shows results for similar trials using a response adaptive randomization method. We
assume that there is no delay in observing responses so H; consists of outcomes and treatment assignments for patients
1,2,...,i— 1.The first 10 patients are assigned treatment using simple equally weighted randomization. For subsequent
patients the randomization weight g (H;) is the standardized Mann-Whitney statistic for comparing outcomes for the two
treatments using data for patients 1, 2, ..., i — 1. This standardized statistic equals the sum of the ranks for outcomes on
treatment ¢ = 1 minus n;(n; + 1) divided by n;ny where n; and ny denote the number of the first i — 1 patients who
received treatments 1 and 0 respectively. This standardized statistic takes values in the range 0-1.



3. Assignificance test based on the randomization distribution

Let dF; denote the distribution of the sequence of treatment assignments ¢ = (cy,...,¢,) conditional on z =
((x1,¥1)s ..., (xn, ¥n)), the sequence of covariate vectors x = (X1, ..., X,) and outcomes y = (y1, ..., ¥n). One can sample
from dF; under the null hypothesis by holding fixed the sequence of covariate vectors and outcomes for the patients in the
clinical trial and re-randomizing all of the patients using the probabilistic treatment assignment mechanism determined by
the adaptive algorithm. The sequence of treatment assignments sampled will in general depend on the sequence of covariate
vectors and outcomes and these are kept fixed.

Let dFy;) denote the distribution of the test statistic T induced when the vector of treatment assignments is drawn from
dFz. This induced distribution can be used as a null distribution for the test statistic computed from the data using the
treatment assignments actually used in the clinical trial. For a one-sided significance test of level ¢ of the null hypothesis
against the alternative that treatment 1 is superior, we use as critical value for the test statistic the 100(1 — «)th percentile
of dFy(y), i.e. Fr ) (1 — ).
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Table 2
Type | error for adaptive randomization test.

No time trend Time trend
Adaptive randomization 0.049 0.050




Theorem 1. Let z = ((x1, ¥1), .. .. (Xn, ¥a)) be a sequence of pairs of covariate vectors and outcomes and let dF, . denote the
joint distribution of z and the vector of treatment assignments c. Let T(z, ¢) denote the value of the test statistic computed on the
data and Fr(;) denote the distribution function of the null distribution of the test statistic T induced by the randomization process
conditional on z. For eachi € {1, ..., n}, we assume that conditional on ((x1, y1), ..., (Xi—1, ¥i—1)), (xi.¥;) is independent of
(€1, ..., Ci_1). Then under the null hypothesis,

Przc [T(g,g) < Frp (1= a)] >1-a. 1)
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Table 3
Power for adaptive randomization.
Total sample size (n) Time trend (8) Power cap = 1 Power cap = 0.67
50 0 0.76 0.82
50 1 0.73 0.80
100 0 0.85 0.85
100 1 0.83 0.84




BromeTrics 31, 103-115
March 1975

SEQUENTIAL TREATMENT ASSIGNMENT WITH BALANCING FOR
PROGNOSTIC FACTORS IN THE CONTROLLED CLINICAL TRIAL

Stuart J. Pocock

Statistical Laboratory, SUNY at Buffalo, Amherst, New York 14226, U.S.A.

RicArD SimoN

National Cancer Institute, Bethesda, Maryland 20014

SUMMARY

In controlled clinical trials there are usually several prognostic factors known or thought to influence
the patient’s ability to respond to treatment. Therefore, the method of sequential treatment assignment
needs to be designed so that treatment balance is simultaneously achieved across all such patient factors.
Traditional methods of restricted randomization such as ‘“permuted blocks within strata’’ prove inadequate
once the number of strata, or combinations of factor levels, approaches the sample size. A new general
procedure for treatment assignment is described which concentrates on minimizing imbalance in the distri-
butions of treatment numbers within the levels of each individual prognostic factor. The improved treatment
balance obtained by this approach is explored using simulation for a simple model of a clinical trial. Further
discussion centers on the selection, predictability and practicability of such a procedure.
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SUMMARY

In clinical trials where several experimental treatments are of interest, the goal may be viewed as
identification of the best of these and comparison of that treatment to a standard control therapy.
However, it is undesirable to commit patients to a large-scale comparative trial of a new regimen
without evidence that its therapeutic success rate is acceptably high. We propose a two-stage design
in which patients are first randomized among the experimental treatments, and the single treatment
having the highest observed success rate is identified. If this highest rate falls below a fixed cutoff then
the trial is terminated. Otherwise, the “best” new treatment is compared to the control at a second
stage. Locally optimal values of the cutoff and the stage-1 and stage-2 sample sizes are derived by
minimizing expected total sample size. The design has both high power and high probability of
terminating early when no experimental treatment is superior to the control. Numerical results for
implementing the design are presented, and comparison to Dunnett’s (1984, in Design of Experiments:
Ranking and Selection, T. I. Santner and A. C. Tamhane (eds), 47-66; New York: Marcel Dekker)
optimal one-stage procedure is made.




Table 1
Designs for fixed power 8 and size a = .05, 6, = .05, 6, = .20

UE A Eo(N) E(N) N I = B B>

.290-.320 86.6 1503 234  .8280 .8041 .8704
97  .285-.310 97.0 1684 258  .8284  .8381 .8949
99  .280-.300 113.0 190.0 278  .8326  .8869 .9021

98 .295-.320 1335 2024 289  .7925 .7785 .8992
102 .290-.315 149.7 227.0 318  .8245 8231 9112
111 .290-.310 167.9 256.6 357 .8518 .8580 .9324

105 .295-320 183.1 256.6 346 7740 7631 9173
109 .295-315 2059 288.0 382 .8073 .8082 .9280
120 .295-310 231.1 3259 432 8362 .8441 .9478

98 .485-.515 1105 1775 262 7725  .8250  .8485
108  .490-.510 119.8 1986 294  .8063  .8515 .8808
119 .490-.510 131.3 2241 332 8430  .8800 .9091

111 .505-.525 162.0 2393 336 7828 7876 .8888
123 .505-.520 177.9 2683 378 8123  .8I82 9166
129  .495-.505 2057 3025 411l 7952 8612 9290

120 .505-.525 2237 304.1 400 7341 7681 9113
128 .505-.520 248.0 340.3 448 7795  .8099 .9260
142 .505-.515 275.6 3845 508 8172  .8437 .9482

86 .695-.730 91.3 1493 224 7717 8148 8591
90 .690-.715 102.8 166.6 244 7822 8612 .8709
99 .695-.715 1111 1873 276  .8313  .8875 .9014

94 .705-.730 138.1 200.6 278 7436 7885  .8878
100 .705-.725 151.1 2239 311 7987 .8288 9049
.700-.720 170.6  251.7 343  .8055 .8661 .9237
99 .710-.735 187.6 2537 334 7379 7763 .9017
710-730 207.3 283.8 374 .7919 .8178 9171
J705-720 2337 319.2 414 7976 .8545 .9362




Table 3
Comparison of required sample sizes for Dunnett’s single-stage and
proposed two-stage designs at o« = .05, 8, = .20, 6, = .05, 6, = .20

Dunnett Two-stage
M EO(N) E(N) Nm:lx

189 86.6 150.3 234
213 97.0 168.4 258

240 113.0 190.0 278

284 133.5 202.4 289
316 149.7 227.0 318
356 167.9 256.6 357

385 183.1 256.6
425 205.9 288.0 382
475 231.1 325.9
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Two-stage selection and testing designs for comparative clinical
trials

By PETER F. THALL

Department of Statistics/Computer & Information Systems, George Washington University,
Washington, D.C. 20892, U.S.A.

RICHARD SIMON anD SUSAN S. ELLENBERG
National Cancer Institute, Bethesda, Maryland 20892, U.S.A.

SUMMARY

A two-stage design which selects the best of several experimental treatments and
compares it to a standard control is proposed. The design allows early termination with
acceptance of the global null hypothesis. Optimal sample size and cut-off parameters are
obtained by minimizing expected total sample size for fixed significance level and power.




Two-stage selection and testing designs

Table 1. Designs having minimal E(N) for given K, 6,, 1 —8*, a =0-05, §,=0-05 ang
8,=0:20

1-8* ny ny B4 ya2 E(N)

0-70 30 0 4 0-787 1-787 141-71
0-75 36 44 0-730 1-818 163-71
0-80 40 52 0-689 1-812 187-64

0-70 36 50 0-684 1-811 172-99
0-75 40 58 0-590 1-808 197-36
0-80 47 62 0-580 1-822 22653

0-70 27 45 0-578 1-794 139-62
0-75 31 50 0-543 1-798 159-54
0-80 36 55 0-500 1-803 183-68

0-70 33 55 0-762 1-902 205-09
0-75 38 59 0-709 1-916 233-33
0-80 48 57 0-835 1-926 266-97

0-70 39 64 0-591 1-917 247-09
0-75 47 63 0-550 1-944 280-89
0-80 52 75 0-500 1-936 320-37

0-70 32 51 0-530 1-928 201-04
0-75 37 55 0-509 1-935 227-94
0-80 42 62 0-472 1-938 260-28

0-70 36 61 0721 1-984 267-26
0-75 44 62 0-868 1-983 303-14
0-80 51 65 0-800 2:004 345-64

070 45 69 0675 1987  321-58
075 49 77 0550 2004 364-32
080 58 84 0700 2000 41447

0-70 35 58 0-529 2:002 26205
075 42 61 0-717 2000 296-28
0-80 48 66 0-655 2:014 33710

E(N) =Q{E(N,’.|.Ho)_+ E(N|6%)}; Npa=(K+1)n,+2ny; 7o=pr (T, < y,| Hp)
y* = pr (choose suboptimal E, | 6*)
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Standard Paradigm of Phase 111
Clinical Trials

m Broad eligibility
m Base primary analysis on I'TT eligible population

m Don’t size for subset analysis, allocate alpha for
subset analysis or trust subset analysis

Only do subset analysis if overall treatment effect is
significant and interaction is significant




Standard Paradigm Sometimes
Leads to

m [arge NNT
m Small average treatment effects

m Inconsistency in results among studies

m False negative studies




Modern Tumor Biology

m Tumors of a primary site differ with regard to
the mutations which cause them, natural history
and response to therapy

m Molecularly targeted drugs are likely to be
effective only for tumors that are driven by de-
regulation of the pathway which is a target of
the drug




m The traditional broad eligibility clinical trial is
inappropriate in these cases. It leads to treating
patients with drugs to which we don’t expect
them to benetit and to doing analyses that are in

conflict with good science.




When the Biology is Clear the
Development Path is Straightforward

Develop a classifier that identifies the patients
likely to benefit from the new drug

Develop an analytically validated test
m Measures what it should accurately and reproducibly
m Design a focused clinical trial to evaluate

effectiveness of the new treatment in test +
patients




Develop Predictor of Response to New Drug

Patient Predicted Responsive

Patient Predicted Non-Responsive

Control

Off Study

Targeted (Enrichment)

Design




Evaluating the Efficiency of Targeted Design

Simon R and Maitnourim A. Evaluating the efficiency of targeted designs
for randomized clinical trials. Clinical Cancer Research 10:6759-63, 2004;
Correction and supplement 12:3229, 2006

Maitnourim A and Simon R. On the efficiency of targeted clinical trials.
Statistics in Medicine 24:329-339, 2005.




RandRat = n

untargeted/ ntargeted

m If T =0, RandRat = 1/ p,?
if p,=0.5, RandRat=4

m [f T=T,/2 RandRat = 4/(p, +1)
if p,=0.5, RandRat=16/9=1.77




Comparing T vs C on Survival or DFS
5% 2-sided Significance and 90% Power

% Reduction in Hazard Number of Events Required




Successful use of targeted

enrichment design

m Trastuzumab, pertuzumab, ado-trastuzumab
emtansine for HER2 over-expressed or
amplified breast cancer

® Vemurafinib, dabrafinib, trametinib for BRAF

mutated melanoma

m Crizotinib and ceritinib in ALK translocated
NSCI.C

m Afatinib in EGFR mutated NSCIL.C




Regulatory Pathway for Test

m Companion diagnostic test with intended use of
identifying patients who have disease subtype
for which the drug is proven etfective




Advantages of enrichment design

- Targets larger treatment effect less diluted by
non-sensitive tumors

- Avoids exposing patients less likely to benefit to
adverse effects of drug until drug 1s shown
etfective for those whom it 1s supposed to
benefit

- Clarity of interpretation




m If the drug is effective in test positive patients, it

can be later evaluated in test negative patients.

Saves test — patients toxicity until drug is shown
effective in the target population it should work in




All comers design

m [nvites poor design
Too tew test + patients
Too many test — patients

Failure to have a specitfic analysis plan

m [nvites inappropriate analysis

Inappropriate requirement of not doing subset
analysis unless I'TT test is significant and interaction
is significant




RandRat = n

untargeted/ ntargeted

m B, =TE in biology + pts
['.=TE in test + pts
L,=ppvB, + (I-ppv)B.







Sensitivity




ARTICLE }

Run-In Phase lli Trial Design With Pharmacodynamics Predictive
Biomarkers
Fangxin Hong, Richard Simon

Manuscript received January 2, 2013; revised July 31, 2013; accepted August 1, 2013

Richera Srmon, PhD,

Comrespondence to Biometric Resosrch Branch rsteute, Bothasda 20692 sil: rsimon@malnin.go

oM W

Background Developments in biotechnology have stimulated the use of predictive biomarkers to identify patients who are
likely to benefit from a targeted therapy. Several randomized phase lll designs have been introduced for devel-
opment of a targeted therapy using a diagnostic test. Most such designs require biomarkers measured before
treatment. In many cases, it has been very difficult to identify such biomarkers. Promising candidate biomarkers

can sometimes be effectively measured after a short run-in period on the néew treatment

Methods We introduce a new design for phase lll trials with a candidate predictive pharmacodynamic biomarker measured
after a short run-in period. Depending on the therapy and the biomarker performance, the trial would either ran-
domize all patients but perform a separate analysis on the biomarker-positive patients or only randomize marker-
positive patients after the run-in period. We evaluate the proposed design compared with the conventional phase

lll design and discuss how to design a run-in trial based on phase |l studies.

Results The proposed design achieves a major sample size reduction compared with the conventional randomized phase
Il design in many cases when the biomarker has good sensitivity (:0.7) and specificity (=0.7). This requires that
the biomarker be measured accurately and be indicative of drug activity. However, the proposed design loses
some of its advantage when the proportion of potential responders is large [>50%) or the effect on survival from

run-in period is substantial.

Conclusions Incorporating a pharmacodynamic biomarker requires careful consideration but can expand the capacity of clini-

cal trials o personalize treatment decsions and enhance therapeutics development.

J Natl Cancer Inst

ferential effects on bio

Improved understanding of cancer biology has stimulated the different treatment arms could have d

development of molecularly targeted cancer treatments that will

likely only benefit patients whose tumors are driven by dercgula
ton of the drug targets. The standard phase 111

al testing average
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longer efficient. Even when such trials result in statistical sig
cance, a large proportion of the patients do not benefit from the
new treatment.

A key component in developing targeted therapy is the iden
tification of predictive biomarkers that can identify patients who

are v to bencfit. Effective predictive biomarkers can benefic
patients, control costs by personalizing treatment, and enhance the
efficency of clinical development. Statsticians are challenged o
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analysis strategics to incorporate predic
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previously introduced for this purpose (1,2), including the marker
strategy dessgn, the enrichment design (3), and the marker-strac
fied design (4)- All
measurement. In many cases, it has been very difficult to identify

of these designs require pretreatment biomar

such pretreatment biomarkers. Biotnarkers measured after receiv

ing the randomized treatment are generally not suitable because
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marker wvalues. Some studies use posttTeatment biomarkers as

surrogates of clinical outcome, but establishing an intermediate
endpoint as a valid surrogate is quite difficalt (5).

Run-in periods in which all patients receive the test drug for a
short period of tme have been used in some clinical trials to exclude

or sclect patients for subsequent randomization (6). The carliest
run-in designs were implemented to exclude patients with poor

compliance to treatment (7,8). Run-in periods in wi

<h all patients
receive placebo have been used to exclude placebo respoaders (9).
In this article, we explore the use of pharmacodymaic biomark
ers measured after a short run-in period on the new treatment as a
predictive biomarker, A wide variety of such biomarkers are poten
tially available. Immunologic response to a therapeutic cancer vac
cine is onc f‘lmp:c. [)c:‘ld:’:t:c Cc!: E)ﬂ'ﬂci! CanceT vaccnes, A:!h()ugh
expensive, are very effective for inducing antitumor immunity

in a variety of cancers (10,11). However, clinical responses are

observed in 1)3‘.3:.' a subsct of patents (12). Assessing c.\.':_\' unmu
nologic response may effciently identify the subset of patients who
will have a greater chance of eventually having clinical responses.

A sccond area is the use of mechanistic markers. Downregulation
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Run-in Designs
Fangxin Hong & R Simon
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Figure 2. Wih sample sizes that give BO% power for the stancard design, the trialJevel power with the run-in design (solid lines) is shown when
randomazirg all patients, for a series of sensitivity and specificty of the biomarker, under 25%, 50%, and 75% prevalence® of true responders, with
no run-in effect { &, = 1)
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When the biology is not so clear

m [t 1s difficult to have the right single completely defined
predictive biomarker identified and analytically
validated by the time the pivotal trial of a new drug is
ready to start accrual
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Adaptive enrichment designs for clinical trials

NOAH SIMON-
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SUMMARY

Modem medicine has graduated from broad spectrum treatments to targeted therapeutics. New drugs
recognize the recently discovered heterogencity of many discases previously considered to be fairly homo-
gencous. These treatments attack specific genetic pathways which are only dysregulated in some smaller
subsct of patients with the discase. Often this subset is only rudimentarily understood until well into large-
scale clinical trials. As such, standard practice has been to enroll a broad range of patients and run post
hoc subset analysis to determine those who may particularly benefit. This unnecessarily exposes many
patients to hazardous side effects, and may vastly decrease the efficiency of the trial (especially if only a
small subsct of patients benefit). In this manuscript, we propose a class of adaptive enrichment designs that
allow the cligibility criteria of a trial to be adaptively updated during the trial, restricting entry to paticats
likely to benefit from the new treatment. We show that our designs both preserve the type 1 error, and in
a varicty of cascs provide a substantial increase in power.

Keywords: Adaptive chinical tnials; Biomarker; Cutpomt; Ennchment

1. INTRODUCTION

The literature on adaptive clinical trial design has focused on sample-size reestimation, changing the plan
for interim analyses, or modifying randomization weights (Chow and Chang, 2007; Muller and Schafer,
2001; Rosenberger and Lachin, 1993; Karrison and others, 2003; Kim and others, 2011). In oncology
therapeutics development, attention has turned toward discovery of bascline predictive biomarkers to iden-
tify patients likely to benefit from the new treatment (Papadopoulos and others, 2006; Schilsky, 2007;
Sawyers, 2008). Tumors of most body sites have been found to be biologically heterogencous with regard
to their causal mutations and molecularly targeted drugs are unlikely to benefit most patients in the broad
diagnostic catcgorics traditionally included in clinical trials. When the pathophysiology of the discase and
the mechanism of action of the drug are well understood, a binary predictive biomarker can be identified
prior to or carly in clinical development and used to restrict entry of paticnts to the pivotal phase 3 clinical
trials comparing the ncw drug with a suitable control. Such “enrichment™ designs can serve to magnify

*To whom correspondence should be addressad
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m Provides a general framework for adaptive
enrichment, 1.e. restricting the eligibility criteria
during the course of the trial based on interim
results.

B Framework includes threshold based enrichment
or enrichment based on multi-marker modeling

m Framework handles multiple types of endpoints

(continuous, binary, time-to-event)




m One primary statistical significance test 1s performed at
the end of the trial, including all randomized patients,
of the strong null hypothesis that the new treatment is
uniformly ineffective

m Framework identifies classes of significance tests which

preserve the type I error even with time dependent and
data dependent changes to outcome distributions of

patients




Simulation of adaptive threshold
enrichment

- Single biomarker uniformly distributed on (0,1)

- K candidate thresholds
- Binary response with probability p,(b) or p,(b)
. True threshold x*

.+ py(b)=p, forall b
e p1(b):p0 for b<X*, Py for b>x*

- dingle interim analysis







Po=-2, p;=-5, K=5, N, =200, all pts 100/yr

True cut-point Power Power non- Accrual Accrual non-
adaptive adaptive adaptive adaptive







Significance tests that preserve type I error with
group sequential adaption




Single binary marker with two
stage design

m Total sample size N patients

m At interim analysis decide

Whether to terminate accrual of M— patients and
continue accrual of M+ till total sample size of N.
Target population will be M+ patients

Whether to continue accrual of marker — patients
and target population will be union of M+ and M-

Whether to terminate accrual of M+ and M- and
accept null hypothesis
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Optimizing randomized trial designs to distinguish which
subpopulations benefit from treatment

By M. ROSENBLUM

Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health,
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SUMMARY
It 1s a challenge to evaluate experimental treatments where it is suspected that the treatment
effect may only be strong for certain subpopulations, such as those having a high initial sevenity of
discase, or those having a particular gene variant. Standard randomized controlled trials can have
low power in such situations. They also are not optimized to distinguish which subpopulations
benefit from a treatment. With the goal of overcoming these limitations, we consider randomized
tnal designs in which the cniteria for patient enrollment may be changed, in a preplanned manner,
based on interim analyses. Since such designs allow data-dependent changes to the population
enrolled, care must be taken to ensure strong control of the familywise Type | error rate. Our main
contribution is a general method for constructing randomized trial designs that allow changes to
the population enrolled based on intenim data using a prespecified decision rule, for which the
asymptotic, familywise Type [ error rate is strongly controlled at a specified level a. As a demon-
stration of our method, we prove new, sharp results for a simple, two-stage enrichment design.
We then compare this design to fixed designs, focusing on each design's ability to determine the

overall and subpopulation-specific treatment effects.

Some key words: Adsptive design; Ennchment design; Group sequential design; Optimization; Patient-onented
rescarch; Randomized tnal; Subpopulation,
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I'te utility of chinscal traal designs with adapuve patient ennchment s mmvestigated 1n an adequate and
wellcontrolled tnal setung. The overall treatment eflect s the umg!‘..c\l average of the ':c'.:u'
effects in the mutually exclusive subsets of the orniginally inten ¢ study population.
adapuive ennchment approaches permul assessment of treatment c:l-:\”. that may be '.-.pphc.:'v
specific nested patient (sub)sets due 10 heterogencous patent charactensties and/or differental re-
sponse 10 irealment, e.g. 4 responsive patient subset versus a lack of beneficial patent subset, in '.:.L
patient (sub)sets studied. The adapuve eanchment approaches considered i u..dL
design scenanios: (1) total sample sze fixed and wath { stopping, (1) sample size .ad.sp..mu-
futility \:0;\;\1" p, and (1) sample size adaptation without futility stopping. We show that regardless
of whether the treatment effect eventually assessed 1s apphcable to the onginally studied patient
populaton or only to the nested patient subsets; it 15 possible 10 devise an adaplve ennchment
approach thatl stausucally f.\..'.;\:.':'u:uu one-size-Hts-all fixed design approach and the fixed design
wilh a pre \pc\ wod muluple test procedure. We emphasize the need of additional studies 1o replicate
the Lnding of a treatment effect in an ennched patient subset. The replication studses are likely to
noed fewer number of patients because of an identified treatment effect size that s larger than the
diluted overall effect size. The adaptive designs, when applicable, are along the hine of
consideration it a drug development program.

cthcency

Key words: Adaptive enrichment algorithm; Futility; Nested patient subset; Strong
control of experiment-wise type I error; Weighted Z-statistic.

Supporting Information for this article is available from the author or on the WWW under
http://dx.doi.org/10.1002/bim). 200900003
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A Two-stage Bayesian Design for
Co-Development of New Drugs and Companion
Diagnostics

Stella Wanjugu Karuri ® and Richard Simon®*

Most new drug development in oncology is based on targeting specific molecules. Genomic profiles and deregulated
drug targets vary from patient to patient making new treatments likely to benefit only a subset of patients
traditionally grouped in the same clinical trials. Predictive biomarkers are being developed to identify patients who
are most likely to benefit from a particular treatment; however their biological basis is not always conclusive. The
inclusion of marker negative patients in a trial is therefore sometimes necessary for a more informative evaluation
of the therapy. In this paper we present a two-stage Bayesian design which includes both marker positive and
marker negative patients in a clinical trial. We formulate a family of prior distributions that represent the degree
of a-priori confidence in the predictive biomarker. To avoid exposing patients to a treatment to which they may
not be expected to benefit, an interim analysis is performed which may stop accrual of marker negative patients or
accrual of all patients. We demonstrate with simulations that the design and priors used control type I errors, give
adequate power and enable the early futility analysis of test negative patients to be based on prior specification on
the strength of evidence in the biomarker. Copyright © 0000 John Wiley & Sons, Ltd.

Keywords: Clinical trials design, predictive biomarkers, bayesian inference, prior distribution, Type |
crror probabilities
_







Strong confidence in test: large r,
Weak confidence in test: small r;
Poo Selected to control type | error rates




Strong confidence in test: Small r, and large r,
Weak confidence in test: Small r, and small r;
Poo Selected to control type | error rates




Interim Analysis




Final Analysis
Probabilistic Indication
Classifier







“Adaptive Final Analysis Plans”

m Adaptive signature design

m Cross-validated adaptive signature design




Cancer Therapy: Clinical

Adaptive Signature Design: An Adaptive Clinical Trial Design for
Generating and Prospectively Testing A Gene Expression
Signature for Sensitive Patients

Bars Fresdin and Richard Simaon

Abstract Purpose: A new generation of moleculary targated agents is enteng fhe definitive stage of cin-
ical evaluation, Many of thase drugs banafit only a subset of treated patiants and meay be ovar-
Inoked by the traditional, broad-eligibdity approach to mndomized cinical (rials. Thus, thare is a
nead for developmeant of novel statistical methodology for rapid evaluation of thase agents.
Exparimantal Dasign: Wa popasa a new adaptive design for randomized cliniza trials of tar
getied agents in settings whens an assay or signatune that rentihos sensiee patents is not vl
able a1 the cutsat of the study. The design combines prospective development of a gena
erpression - based classifier to select sensitive patients with a properdy possered test for ovaerall
eifect

Results: Performance of the adaptive dasign, relative o the mane traditonal design, i5 evilusied
in & simutation Study. 11is shown that whes the propoion of patients sansiine 1o e new dug s
low, the adeptive design substantially reduces the chance of lalse rejection of sllective new treal-
menis. ¥When the new treatment is broadly effective, the adaptive design has powes 1o detect tha
overal aflact similar 10 tha tradibenal dagign. Formulas ane providad to deteming the slustions in
wihich the new design i advaniageous.

Conclusion: Development ol a gane expredgion — based clagailiern 1o identily the subset ol gendi-
lrve palients can be prospeciively incorporated into a andomized phase Il desgn withoul com-
promising the ability 1o detect an overal| effect.

DIL'\'I'|II|‘I:I1|'IIH in tumer biclogy kave resulied in shift toawvand G
malecularly targeted drogs (1= 3). Mo buman nomeor vypes are
heterageneous with regard o molecular pathogenesis, genomic
signatres, and phenoty Iy o subset
of the patients with 2 given cancer i likely o benefit from a

ic wchnologies, such as microamays and single
nucleatice polymomphism genotyping, are powerful wols that
hold a greae potential for identifying patients who ane kely
1o benefit from a angeted agent (10, 11). However, due 1o the
large nuniber of genes available for anabysis, interpretation of

 proper

targeted agenl {4) This complicates all siages of clinical
development, especially randomized phase 1 tmals (5, 6). [n
SOdNE  CRed, |:lf|.'|.1|l.'||\-'l.' AREIYE that can accurstely (dentify
patkents who are likely to benefit from the new therapy have
been developed. Then, targeted randomized designs thar resirict
eligibiliny 1o patems with sensltive tumors should be used {7).
Hiwwever, reliable assiys 1o select sensitive patkenis are ofien not
available (8, %), Consequently, raditional randomized clinical
trails with hroad eligibiliey oriteria are routinely used o
evaluate such agents, This is generally inefficient and may lead
10 missing effective agenis

Authare’ Affilintion: BEnmetric Assench Branck, Dvsion al Concee Fastmeen
ke, Baltwatin, Miryior
el B4/ 05

ik wearn chafronsad i peart
ehanged. Th & ] thiara hoie L el mioriid 3o
with 18 WLS.C. Seazthon 1734 solaly 10 incheane this fact
Riguici1s Tar raprinta: Bk Fraidlin, Biomaime Rasaasch Branch, Diviiin of
Cimcar Tamant ond Disgrosis, Natio B130 Exacutiv
Ecubkvied, EFN S122 MEC 7434, Bath 27434, Prona. 300402
OB Fay: 301-3032. 0560, E-srurl: Prasclin b ned nib gow.
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aesadanea

Clin Cancer Res 2005:11(21) Novembar 1, 2005

T8T2

these dhata is complicated. Separation of rdiable evidence from
the random paterna inherent in high-dimensional daa
Tejiuires spdl.lll.l{‘ﬂ statisgical |II|'.‘|J!|III.1II]II|.'¢ thear s pradpeciively
Iincorporyted [ che wrial design, Pracical iplementation of
sich deslgne has been lagging In panicular, analysis of
micicarray daa from phase 0 randomized soudies s usually
vonsidered secondary 10 the primary overall comparison of all
elipible patients, Many analyses are not esplicidy written ino
protocols and done rerespectively, mainly as “hypothesis-
penerating” toolks.

We propose a new adaptive design for randomized clinical
wials of molecularly warpeted agents in sewings where an assay
or signature that idendifies sensitive patienis is not available
Our approach includes three companenis: (@) a statistically
valid identification, based on the first stage of the trial, of the
suhset ol patiends wha are most likely 10 benefic from the
niew agent; (B) a properly powered st of overall treatmenit
effect at the end of the wrial wsing all randomized patienes:
and (¢} a test of treatmend effect for the subset identified in
the first stage, bt using only patiemts randomized in the
remuainder af the ol The components are prospectively
incorportted into a single phase 11 mndomized clinical eal
with the overall falsepositive errar rate controlled at a
prespecified level.
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Measure
candidate
markers

Randomize n
patients to T or C

Follow-up

Perform final analysis

Declare —
broad Partition into

effectiveness training set T and
validation set V

Develop
indication
classifier in T

Compare new
treatment to control
in classifier +
patients of V

p<.04 in subset

Declare effectiveness
for classifier positive
patinets




m The indication classifier is not a binary classifier
ot whether a patient has good prognosis or poor
prognosis

m [t is a “two sample classifier” of whether the

prognosis of a patient on E 1s better than the

prognosis of the patient on C




m The indication classifier maps the vector of candidate covariates

into {E,C} indicating which treatment is predicted superior for
that patient

m The classifier need not use all the covariates but variable
selection must be determined using only the training set

Variable selection may be based on selecting variables with apparent
interactions with treatment, with cut-off for variable selection determined
by cross-validation within training set for optimal classification

m The indication classifier can be a probabilistic classifier
















True Model




Classifier Development

m  Using data from stage 1 patients, fit all single gene logistic models
G=1,...,M)

m  Select genes with interaction significant at level a




Classification of Stage 2 Patients

m For ’th stage 2 patient, selected gene j votes to
classify patient as preferentially sensitive to T 1f




Classification of Stage 2 Patients

m Classity 1’th stage 2 patient as differentially
sensitive to E relative to C 1f at least G selected
genes vote for differential sensitivity of that
patient




Treatment effect restricted to subset.
10% of patients sensitive, 10 sensitivity genes, 10,000 genes, 400 patients.

Power

Overall .05 level test

Overall .04 level test

Sensitive subset .01 level test
(performed only when overall .04 level test is negative)

Overall adaptive signature design




Overall treatment effect, no subset effect.
10% of patients sensitive, 10 sensitivity genes, 10,000 genes, 400 patients.

Power

Overall .05 level test

Overall .04 level test

Sensitive subset .01 level test

Overall adaptive signature design




Key Idea

m Replace multiple significance testing by
development of one indication classifier and
obtain unbiased estimates of the properties of
that classifier if used on future patients
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Adaptive Clinical Trial Designs for Simultaneous Testing of
Matched Diagnostics and Therapeutics

Howard |. Scher', Shelley Fuld Nasso?, Eric H. Rubin®, and Richard Simon*

Abstract

A critical challenge in the development of new molecularly targeted anticancer drugs is the identi-
fication of predictive biomarkers and the concurrent development of diagnostics for these biomarkers.
Developing matched diagnostics and therapeutics will require new clinical trial designs and methods of
data analysis. The use of adaptive design in phase 111 trials may offer new opportunities for matched
diagnosis and treatment because the size of the trial can allow for subpopulation analysis. We presentan
adaptive phase 111 trial design that can identify a suitable target population during the early course of the
trial, enabling the efficacy of an experimental therapeutic to be evaluated within the target population as
a later part of the same trial. The use of such an adaptive approach to clinical trial design has the
potential to greatly improve the field of oncology and facilitate the development of personalized
medicine. Clin Cancer Res; 17(21); 6634-40. ©2011 AACR.

Introductory Note

At the 2010 Conference on Clinical Cancer Research, co-
convened by Friends of Cancer Research and the Engelberg
Center for Health Care Reform at the Brookings Institution,
participants explored 4 pressing challenges in the field.
Articles summarizing the panel’s recommendations on each
of these topics are featured in this issue of Clinical Cancer
Research (1-4).

Key Role of Companion Diagnostics in Oncology
Drug Development

Nearly all cancer drugs being developed today are
designed to inhibit molecular targets that have been iden-
tified as being dysregulated in human tumors. Genomics
has established that the dysregulated pathways and mutated
genes in tumors originating in a particular primary site are
highly variable. To optimally evaluate and utilize a targeted
approach requires the concurrent development of diagnos-
tics that enable the identification of those tumors that are
most likely to be sensitive to the anticancer effects of a
particular drug or drug combination. The reality of code-

Authors' Affiliations: 'Department of Medicine, Genitourinary Oncology
Service, Memorial Sloan-Ketterin% Cancer Center, and Weill Cornell Med-
ical College, New York, New York; “Susan G. Komen for the Cure Advocacy
Alliance, Washington, District of Columbia; *Oncology Clinical Research,
Merck Research Laboratories, Whitehouse Station, New Jersey; and “Bio-
metric Research Branch, National Cancer Institute, Bethesda, Maryland

Corresponding Author: Howard |. Scher, Department of Medicine, Sidney
Kimmel Center for Prostate and Urologic Cancers, Memorial Sloan-Ketter-
ing Cancer Center, 1275 York Avenue, New York, NY. Phone: 646-422-
4323; Fax: 212-988-0851; E-mail: scherh@mskcc.org

doi: 10.1158/1078-0432.CCR-11-1105

©2011 American Association for Cancer Research.

veloping a matched diagnostic and therapeutic has pro-
found implications for the clinical trial designs used in
drug development. Trials of cytotoxic drugs typically enroll
unselected patients at a particular point in the continuum of
a disease in the hope that the response of tumors that are
sensitive to the treatment will be sufficient to show benefit
for the population as a whole. Although this approach may
lead to broad labeling indications, it also exposes patients
with nonsensitive tumors to unnecessary toxicities and
increases the possibility of discarding a drug that may
dramatically benefit a subset of patients. Consequently, this
strategy is not viable for molecularly targeted agents, in
which the activity is likely to be restricted and determined
more by the genomic alteration(s) within a tumor at the
time treatment is being considered than by the primary site
in which the wmor originated. The use of anatomically
based (i.e., primary site of disease), "all comers" approaches
to develop targeted approaches has typically led to failure
in phase Il studies, or demonstration of "success" based
on statistically significant but clinically questionable
benefits (5).

Although developing the right drug for a specific patient
has great value to the individual and is critical for controlling
the costs of health care, it dramatically increases the com-
plexity of the drug development process. For many drugs,
the complexities of identifying a predictive biomarker and
the practical complexities of developing analytically valid
diagnostic tests for the biomarker are grossly underesti-
mated. Knowing when to start the development of the
diagnostic is also an issue, particularly when the effective-
ness of the drug in any population is uncertain. Developing
the right drug for the right subset of patients requires new
clinical trial designs and new paradigms of data analysis.

Efforts to codevelop a matched diagnostic and therapeu-
tic face other challenges as well. Even with extensive

Clin Cancer Res; 17(21) November 1, 2011
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The Cross-Validated Adaptive Signature Design

Boris Freidin', Wenyu Jiang”, and Richard Simon’
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Abstract

Purpose: Many anticancer therapies benefit only a s
the traditional broad eligibility approach to design phase 11 clinical trials. New biotechne
microarrays can be used to Identify the patients that are most likely to benefit from antican

However, due to the h

time the deflinitive phas

gh dimensional nature of the genomic data, developing a rel
1 trail s designed may not be feasib
Experimental Deslgn Previously, Preidlin and Simon (Clinical

sact of treated patients and may be overlooked by

ORICs "III"I C LY
1 therapies

ble classificr by the

Cancer Research, 200%) introduced the

adaptive signature design that combines a proapective development of a sensitive patient classifier and a

properly powered test for overall effect in a single pivotal trial. In this article. we propose a cross valida

tion extension of the adaptive signature design that optimizes the efficiency of both the classifier devel

opment and the validation components of the design

Reaulta: The new design is evaluated through simulations and is applied to data from a randomized
3 1 A

breast cancer trial

Conclusion: The cross validation approach s shown to considerably improve the performance of the

adaptive signature design. We also describe approaches to the entimation of the treatment effect for the

identified sensitive subpopulation, Clin Cancer Res

6921-8 ©2010 AACR

Due o the molecular heterogeneity of most human
cancers, only a subset of treated patients benefit from a
piven theragsy. This is particularly releva

W for the new gen

eration of anticancer agents that tanget spees e molecular
pathways (1
sach as s
a genet
most ik
dia

(o pore nomic) technologies

ot ful tools
e (dlagnostic test) for patients who are
m a targeted agent. Ideally, such
wostle test should be developed and validated before

commencing the definitive phase 111 trial (4). However,
due to the complexity of sigr

ling pathways and the large
number of genes available for analy
of a reliable diagnoatic classifier using early nonrando
mized phaswe Il data is o Conducting a
phase I randomized clinical trial {RCT) requires consid
erable time and resources. Therefore, clinical trial designa
that allow combining the definitive evaluation of a new
agent with the development of the companion diagnostic

the development

test can considerably specd up the introduction of new
cancer therapiea.

Previously, the adaptive signature deasign (ASD) haas
been proposed for settings where a signature to kdentify
senaitive patients is not available (5). The design combines

AcAbhore' AMilwliorss:  Sormetng Faseears 0 Do oy (Deetnann oo Canraroe
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the prospective development of a ph

macogenomic Jdiag
nostic test {signature) to select sensitive patients with a
propetly powered test for overall effect. 1t was shown that
when the propgortion of patients sensitive (o the new drug
s low, the ASD & stantially reduces the chance of false
rayection of effective new treatments. When the new treat
ment is broadly effective, the power of the adaptive design
o detect the overall effect is similar to that of the tradi
tonal design

The signature component of the ASD carries oul signa
v dev

oriment and valikdation on the ma hl-l“y exclu
patients (e g.. hall of the study
s used W deve v a4 signature and another hall
ate it). Although the conceptual simplicity of this
ach s appealing. it also limits its power as only hall

sive

subgroups

progranlat

o valic
agpr
of tl lents are used for signature development and
halfl for validation, This is especially reley
setting becawse (a) sign

woin the I
tin high dim
and {b) when the
fraction of sensitive patients is low, a large number of pa
tents needs 1o be sareened o identify the sullicient num
ber of sensitive gatients to achieve accegtable prower

ension of the ASD in
ent and validation 4
dexd in a complete cross validation pwos

S iaill

requires lage s

In this article, we describe an

e embed
ure. This allows

which signature develogr

the wse of virtually the entire study popalation in both sig
nature development vl validation steps. We develop a
that p» ves the study wise type | error while
substantially ine sing the stat cal power for establish
ing a statistically u.;n-fu.n\l treatment ellext for an idents
fled subset of patients who benefit from the exprerimental

pr--nll'u

Ueatment. We also examine approaches (o estimation of

treatment effect for the identified sensitive subset
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Cross-Validated
Adaptive Signature Design
End of Trial Analysis

m Compare T to C for all patients at significance

1€V€1 ocoveraﬂ

If overall H, is rejected, then claim effectiveness of T
for eligible patients

Otherwise




m Using a pre-specitied classifier development
algorithm A, develop a predictive binary
classitier C on the full dataset

This may involve vatiable selection and/or tuning

parameter optimization

C is a binary classifier with C(x)=1 means patient 1s
predicted to benefit from E over C




Resubstitution estimate of
treatment effect
m S={i | C(x)=1}

m T=estimated treatment effect (e.g. log hazard
ratio or log-rank statistic) in S




De-biasing T

m et Aj=true treatment etfect in S
m T=A- bias

A =T+ bias ® T+A___ T

resamp

A = re-sampling estimate of E¢[A(]

resamp




Re-sampling estimate of E¢[A(]

m Partition the full data set into K parts

m Form a training set by omitting one of the K parts. The
omitted part 1s the test set
Apply classifier development algorithm A to the training set,

develop a predictive classifier C’of the subset of patients who
benefit preferentially from the new treatment E

Classify the patients in the test set as likely to benefit from E
of not

m Repeat this procedure K times, leaving out a different
part each time

After this 1s completed, all patients in the full dataset are
classified. Let S’ denote the patients classified as sensitive to E




m Compare E to Cin §’) computing a measure of
difference A . This might be the difference in

resamp .
response proportions or for survival data the log-

hazard ratio or log-rank statistic




A, eqamp 18 the estimate of measute of treatment effect in

patients who are selected for treatment by the classifier

C developed by applying A to the full dataset.

Generate the null distribution of A, . by permuting

resam

the treatment labels and repeating the entire K-fold
cross-validation procedure

Perform test at significance level 0.05 - o

overall
If H, is rejected, claim effectiveness of E for subset
defined by classifier C




80% Response to T in Sensitive Patients
25% Response to C otherwise
25% Response to C
10% Patients Sensitive

ASD

Overall 0.05 Test 0.223

Overall 0.04 Test 0.198

Sensitive Subset 0.01 0.205
Test

Overall Power 0.351




70% Response to T in Sensitive Patients
25% Response to T Otherwise
25% Response to C
20% Patients Sensitive

ASD

Overall 0.05 Test 0.486

Overall 0.04 Test 0.452

Sensitive Subset 0.01 0.207
Test

Overall Power 0.525




70% Response to T in Sensitive Patients
25% Response to T Otherwise
25% Response to C
30% Patients Sensitive

ASD

Overall 0.05 Test 0.830

Overall 0.04 Test 0.794

Sensitive Subset 0.01 0.306
Test

Overall Power 0.825




35% Response to T
25% Response to C
No Subset Effect

ASD

Overall 0.05 Test 0.586

Overall 0.04 Test 0.546

Sensitive Subset 0.01 0.009
Test

Overall Power 0.546




25% Response to T
25% Response to C
No Subset Effect

ASD

Overall 0.05 Test 0.047

Overall 0.04 Test 0.04

Sensitive Subset 0.01 0.001
Test

Overall Power 0.041




506 prostate cancer patients were randomly allocated to one of four
arms: Placebo and 0.2 mg of diethylstilbestrol (DES) were combined
as control arm C

1.0 mg DES, or 5.0 mg DES were combined as E.

The end-point was overall survival (death from any cause).

Covariates:

Age: In years

Performance status (pf): Not bed-ridden at all vs other

Tumor size (sz): Size ot the primary tumor (cm?2)

Index of a combination of tumor stage and histologic grade (sg)

Serum phosphatic acid phosphatase levels (ap)




485 cases with all covariates

A proportional hazards regression model was developed using

patients in both E and C groups. Main effect of treatment, main
effect of covariates and treatment by covariate interactions were
considered.

log|[HR(z,x)]=a z + b’x + z c’x
z = 0,1 treatment indicator (z=0 for control)
X = vector of covariates
log[HR(1,x)] — log[HR(0,x)] = a + ¢’x
Define classifier C(X) =1if a+ c’x <c

= 0 otherwise

c = median of the (a + ¢’x) values in the training set.




Figure 1: Overall analysis. The value of the log-rank statistic is 2.9 and the
corresponding p-value is 0.09. The new treatment thus shows no benefit overall at
the 0.05 level.
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Figure 2: Cross-validated survival curves for patients predicted to benefit from the

new treatment. log-rank statistic = 10.0, permutation p-value is .002
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Figure 3: Survival curves for cases predicted not to benefit from the new treatment.
The value of the log-rank statistic is 0.54.
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Proportional Hazards Model Fitted to Full Dataset

coef p-value
Treatment -2.195 0.12
age 0.002 0.85
pf(Normal. Activity) -0.260 0.25
SZ 0.020 0.001
Sg 0.113 0.004
ap 0.002 0.21
Treatment*age 0.050 0.003
Treatment*pf(Normal. Activity) -0.743 0.026
Treatment*sz -0.010 0.26
Treatment*sg -0.074 0.19
Treatment*ap -0.003 0.11
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Predictive Biomarkers and Personalized Medicine

Developing and Validating Continuous Genomic Signaturesin
Randomized Clinical Trials for Predictive Medicine

Shigeyuk Matsu ', Richard Simon?, Pingping Qu®, John D. Shaughnessy Jr*, Bart Bariogle®, and John Crowiey”

Abstract

Purpose: [t is highly challenging to develop reliable diagnostic tests to predict patients’ responsiveness to
anticancer treatments on clinical endpoints before commencing the definitive phase Il randomized trial
Development and validation of genomic signatures in the randomized trial can be a promising solution.
Such signatures are required to predict quantitatively the underlying heterogeneity in the magnitude of
treatment effects.

Experimental Design: We propose a framework for developing and validating genomic signatures in
randomized trials. Codevelopment of predictive and prognostic signatures can allow prediction of patient
level survival curves as basic diagnostic wols for treating individual patients,

Results: We applied our framework to gene-expression microarray data from a large-scale randomized
trial to determine whether the addition of thalidomide improves survival for patients with multiple
myeloma. The results indicated that approximately half of the patients were responsive to thalidomide,
and the average improvement in survival for the responsive patients was statistically significant. Cross
validated patient-level survival curves were developed to predict survival distributions of individual future
patients as a function of whether or not they are treated with thalidomide and with regard o their baseline
prognostic and predictive signature indices

Condusion: The proposed framework represents an important step toward reliable predictive medicine.
It provides an internally validated mechanism for using randomized clinical trials 1o assess (reatment
efficacy for a patient population in a manner that takes into consideration the heterogeneity in patients’
responsiveness (o treatment. ltalso provides cross-validated patient-level survival curves that can be used for
selecting treatments for future patients. Clin Cancer Res; 18(21); 6065-73. ©2012 AACR
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Fig. 1. Survival curves for all 351 patients with genomic data in the

randomized trial for multiple myeloma.
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Fig. 5. Survival curves for cach of the three subclasses, “Low"”, “Intermediate™
and “High” derived from using thresholds of 33rd and 66th percentiles in the

predicted signature score S (panels a-c).




Acknowledgements

Adaptive randomization Enrichment designs
David Hoel Aboubakar Maitournam
George Weiss Run-in design

Adaptive stratification Fangxin Hong

Stuart Pocock Adaptive enrichment
Adaptive sample size Noah Simon
Gordon Lan Adaptive target
Max Halperin population
Adaptive rx selection Bortis Freidlin

Peter Thall Wenyu Jiang
Susan Ellenberg Shigeyuki Matsui




